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Abstract. As an extension of the Thue-Mone lattice, we consider the generalized Thue- 
Morse lattices associated with the sequences S. given by the recursion relation 
S,, ,  = (SY, S;")for 1 0 withS, = {AB),  in whichm and n are positive integersandS,is the 
complement of S,obtained by interchangingA and B in S,. A unified trace map is derived to 
study the electronic energy spectra for the diagonal tight-binding model. The results show 
that the spectra exhibit a new kind of self-similarity. 

1. Introduction 

In recent years, the electronic properties of the one-dimensional (ID) quasiperiodic 
systems have been extensively studied [l-71. The Fibonacci lattice associated with the 
Fibonacci sequence S, which is given by the recursion relation = {Sl ,  Sf-l} for 
13 1 with So = { B }  and SI = {A}, where A and B represent two different tiles, has been 
well investigated. In order to explain the energy spectrum and the scaling properties of 
the Fibonacci lattice, Kohmoto, Kadanoff and Tang (KKT) [I] introduced a dynamical- 
map method. More recently much attention has been paid to other ID quasiperiodic and 
aperiodic systems [8-25], and in particular the generalized Fibonacci lattices [12-211 and 
the Thue-Morse lattice [22-251, for which the underlying sequences are the generalized 
Fibonacci sequences and the Thue-Morse sequence, respectively. As a straightforward 
generalization of the Fibonacci sequence, the generalized Fibonacci sequences are 
constructed recursively by Si+, = IS?, ST-,} with So = {B}  and SI = {A} ,  where m and 
n are positive integers. The KKT method was extended to study the excitation problems 
of the generalized Fibonacci lattices [12-211 and a unified trace map was obtained 
114,181. Results showed that these lattices exhibit richer physical properties than the 
Fibonacci lattice does. The construction rule of the Thue-Morse sequence is Si+, = 
{ S f ,  sf} for I 0 with SO = {AB) ,  in which .?, is the complement of S, obtained by 
interchangingA and B in S f .  The roots of the characteristic equation of the Thue-Morse 
sequence are '2 and 0, which satisfy the Pisot-Vijayaraghavan (PV) property. However, 
it is interesting that, in spite of the P v  property of the associated substitution matrix, the 
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Thue-Morse sequence is not quasiperiodic, and that its Fourier transform does not 
contain any Braggpeak, since it is purely singular continuous [S-111. This result indicates 
that the Thue-Morse lattice deserves further investigations. On the other hand, stimu- 
lated by the generalization of the Fibonacci sequence, we introduce the generalized 
Thue-Morse sequences. 

The generalized Thue-Morse sequences introduced here can be regarded as a 
straightforward generalization of the Thue-Morse sequence and are constructed by the 
recnrsion relation SI+, = {Sf, S T }  with So = {AB}, in which m and n are positive 
integers and the meaning of S,  is the same as that in the Thue-Morse case. From the 
construction rule of S,, the total number F, of tiles A and B in S, follows the recursion 
relation F,+ , = (m + n)F, with Fo = 2. Obviously, the total number of the letters in Slis 
F, = 2(m + 8)'. In thispaper, wederiveaunifiedtracemaptostudythespectraproperties 
of the generalized Thus-Morse lattices in the framework of the KKT method and expect 
more interesting results emerging. 

J X Zhong et a1 

2. Dynamical maps 

To study the electronic properties of the generalized Thue-Morse lattices, we employ 
the diagonal tight-binding model 

*"+I + *.-I + VnrYn = ErYn  (1) 
where V, is the wavefunction at site n, E the energy and V, the site energy that takes 
two values V ,  and V ,  arranged in a generalized Thue-Morse sequence. 

Equation (1) can be written as 

",+I  =Wn)*n (2) 
where Y,, is a column vector (qn, ?pn- ,)( and M(n) is a 2 X 2 unimodular matrix 

M(n) = (f - -'). 
0 

The wavefunction at an arbitrary site N is given by 

Y N + I  =M("Y, 

where 
M""I = M(N)M(N - 1) .  . . M(2)M(1) 

(3) 

(4) 

is successive multiplications of the transfer matrices. If N is a generalized Thue-Morse 
number F,, the matrix MI = M satisfies the following recursion relation: 

with initial conditions MO = M(B)M(A) and MO = M(A)M(B), in which M, and Ml 
correspond to the sequences SI and s,, respectively. Since xo  = f,,, it follows from 
equation (6) that 

.X,=.?, 1 3 0  (7) 
where X I  = 1 TI M, and .f, = 1 Tr MI, in which Tr denotes the trace of a matrix. The 
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recursion relation (6)_can be considered as a non-linear dynamical mapping problem. 
The matrices MI and M, are unimodular; so each of these can be parametrized by three 
real numbers. From the basic relation (7), we think that the map which transforms 
(M,, MJ-+ (M,+], M,,,) is five dimensional. 

By taking the trace of equation (6) ,  we have 
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Figure 1. Energy spectra of periodic systems of 
periods F , = ( m + n ) F , . ,  f o r l s l  with F , = 2 .  
m = n = 1 andl = 1,2,3,4and 5;  (a)antiperiodic 
condition employed; (b) periodic condition 
employed. Thesiteenergies V, and V,arechosen 
to be V, = -V, = 1. Each number inside the 
figure labels the corresponding actual energy 

. 
E levels. 

eralized Thue-Morse lattices. When m = n = 1 in particular, the map (11) is reduced to 
the trace map for the Thue-Morse lattice [22], i.e. 

X i + ,  =4XiX:_] - 4 X : - ]  + 1. (21) 

3. Energy spectra 

When a periodic or an antiperiodic condition is applied, the energy spectrum of the 
periodicsystem with unit cell Si is determined by 

x i  = +1. (22) 
The energy spectrum of a generalized Thue-Morse lattice is obtained in the limit 1- m, 

The energy spectra of the periodic systems with periods FI = (m + n)Fl-  I for I >  1 
withF,,= 2arepresentedinfigures1,2and3,inwhich(m,n) = (1, l),(l, 2)and(2,2), 
respectively. The two types of site energy are chosen to be V ,  = -V, = 1 and the 
eigenvalues of the energy are represented by vertical linesegments. We need to mention 
that, owing to the geometrical properties of the construction rule of the generalized 
Thue-Morse sequences, the energy spectrum of the system with (m,  n) = (2 , l )  is the 
same as that of the system with (m, n) = (1.2). We can see from figures 1,2 and 3 that 
the energy spectra are symmetric around the energy E = 0 and composed of six main 
clusters for the Thue-Morse lattice, and ten main clusters for (m, n) = (1,Z) and 
(2,Z). In particular, the energy spectra exhibit an exotic kind of self-similarity. For 
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FigurpZ.AsforfigureI,butform= 1.n =2with 
I =  1.2and3.  I =  1.2and3.  

Figure 3. As for figure 1, but form = n = 2 with 

convenience of description, we order the clusters of energy levels in figures 1 and 2 from 
left to right. From figure l(a), one sees that, whenflipped, the third main cluster of 
energy levels at the lth ( I  3) generation is similar to the supercluster composed of the 
first two main clusters at the ([ - 1)th generation. Analogously in figures 2(a) and (b) ,  
when the fifth main cluster of energy levels at the Ith generation is flipped, it is similar 
to the supercluster consisting of the first four main clusters at the (1 - 1)th generation. 
This new kind of self-similar behaviour in the energy spectra is here referred to as the 
flipped self-similarity. The flipped self-similarity cannot be clearly seen in figure 3(a) 
because the eigenstates are distributed so densely. However, it is clear that the feature 
of the lattice for (m, n) = (2,2) is the presence of dense 'Bloch-like' clusters (the third 
mainclusterand theeighthmainclusterfromleft toright infigure3)similar to theresults 
of KoMi and Ali [21] for the magnetic excitation spectra of the generalized Fibonacci 
systems associated with the sequences St+, = { S I , S ; - ~ }  and = { S I , S ~ - , } .  In the 
energy spectrumshown in figure l(b),  becauseofthe periodiccondition employed, there 
is degeneration for some energy levels, making the flipped self-similarity not preserved. 
However, when the condition I x I /  = 1 - 6 is chosen, in which 6 is an arbitrary small 
positive number, it is found that the degeneration disappears and the energy spectrum 
recovers the flipped self-similarity. There is also degeneration for some energy levels in 
the spectrum shown in figure 3(b). The degenerations of the energy levels can be 
understood by analysis of the corresponding trace maps. As an example, we examine 
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the trace map given by equation (21) for the Thue-Morse lattice. From equation (X), 
when the periodic condition is employed, i.e. xI = 1, the eigenvalues are determined by 
x I - l  = 1 and x!-* = 0. The latter condition is actually equivalent to x1-? = 0. It is for 
this reason that the number of the eigenvalues for periodic system with unit cell S, in the 
periodic condition is less than the Thue-Morse number FI; this is different from the case 
when the antiperiodic condition is applied, implying that there is degeneration for some 
energy levels. 
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